Comparison of six models of the respiratory system based on parametric estimates from three identification models.

نویسندگان

  • K Lopez-Navas
  • E Rother
  • U Wenkebach
چکیده

The identification of respiratory impedance based on mathematical models and the consequent assessment of respiratory work propose an aid to adequately setting ventilatory support. We compared the respiratory models RC, RIC, eRC, eRIC, aRC and aRIC using parametric identification by ARX, ARMAX and OE and data from simulations, volunteers and patients. The comparison bases on the quality of the estimation and of the reconstruction of the output pressure signal representing the inspiratory effort.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of time to the event and nonlinear regression models in the analysis of germination data

Extended abstract   Introduction: Numerous studies are being carried out to reveal the effects of different treatments on the germination of seeds from various plants. The most commonly used method of analysis is the nonlinear regression which estimates germination parameters. Although the nonlinear regression has been performed based on different models, some serious problems in its structure...

متن کامل

Regression Modeling for Spherical Data via Non-parametric and Least Square Methods

Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...

متن کامل

A Comparison of Thin Plate and Spherical Splines with Multiple Regression

Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...

متن کامل

Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival

Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...

متن کامل

Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival

Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedizinische Technik. Biomedical engineering

دوره 57 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2012